3 properties of elements

Atomic radius

lonisation energy

Electronegativity

Atomic radius

- ½ distance between 2 nuclei of two atoms of the same element that are joined together by a single covalent bond.
- It is possible for scientists to measure experimentally the distance between the nuclei of 2 atoms.
- This is known as bond length and is measured using x-ray diffraction. Usually in nanometres.
- See table On page Of your maths tables

What do we notice?

What do you notice?

ΑI						VIIA	AIIIV
Н						Н	He
0.037	HA	AIII	IVA	VΑ	VIA	0.037	
Li	Be	В	С	N	0	F	Ne
0.123	0.089	0.088	0.077	0.070	0.066	0.064	
Na	Mg	Al	Si	P	S	Cl	Ar
0.157	0.136	 0.125	0.117	0.110	0.104	0.099	
K	Ca	Ga	Ge	As	Se	В	Kr
0.203	0.174	0.125	0.122	0.121	0.117	0.114	
Rb	Sr	In	Sn	Sb	Te	I	Xe
0.216	0.192	0.150	0.140	0.141	0.137	0.133	
Cs	Ba	Tl	Pb	Bi	Po	At	Rn
0.235	0.198	0.155	0.154	0.152	0.153		
Fr	Ra						

The values of atomic radii decrease going across a period. Why?

- Increase in effective nuclear charge. Increase in no. of protons in nucleus. These extra protons attract the outer electrons to draw energy levels closer to nucleus.
- No increase in screening effect. The addition of an electron going across a period is not added to a new energy level each time. There is an increase in the effective nuclear charge.

The values of atomic radii increase going down a group. Why? Must give 2 reasons

- As we go down a group there is a <u>new energy</u> <u>level</u> which is further from the nucleus.
- Screening effect. Even though nuclear charge increases this is counteracted by the shielding effect of the inner energy levels of electrons.

Trends in Ionisation energy

 1st ionisation of an atom is minimum energy required to remove the most loosely bound electron from a neutral gaseous atom in its ground state.

1st Ionisation energy decreases going down a group why?

- Increase in atomic radius
- Screening effect of inner electrons.

Ionisation energy increase going across a period . Why?

- decreasing atomic radius
- Increase in nuclear charge

Exceptions

lonization Energy Increases									
IA								VIIA	VIIIA
Н								Н	He
1312.0	IIA			IIIA	IVA	VA	VIA	1312.0	2372.3
Li	Be			В	С	N	0	F	Ne
520.2	899.4			8,008	1086.4	1420.3	1313.9	1681.0	2080.6
Na	Mg			Al	Si	P	S	Cl	Ar
495.8	737.7	_		577.6	786.4	1011.7	999.6	1251.1	1520.5
K	Ca			Ga	Ge	As	Se	В	Kr
418.8	589.8		×.	578.8	762.1	947	940.9	1139.9	1360.7
Rb	Sr			In	Sn	Sb	Te	I	Xe
403.0	549.5	100 A	1	558.3	708.6	833.7	869.2	1008.4	1170.4
Cs	Ba			Tl	Pb	Bi	Po	At	Rn
375.7	508.1			595.4	722.9	710.6	821		1047.8
Fr	Ra								

Plot a Graph of 1st ionisation (y-axis against atomic no. (x-axis) for elements in period 2.

 Identify exceptions to thus trend.

Exceptions

Be > B

- $1s^2$, $2s^2$
- Beryllium has a full 2s sublevel. This gives an atom of Be extra stability so more energy than expected is needed to remove it's most loosely bound electron

N > O

- $1s^2$, $2s^2$, $2p^3$
- Nitrogen has a half full 2p sublevel. This gives an atom of N extra stability so more energy than expected is needed to remove it's most loosely bound electron

Can you explain

Mg > Al P > S

Is relative force of attraction that an atom has for the shared pair of electrons in a covalent bond

HEHUS III EIECH OHEGAUVILY

Going across a period

- Electronegativity increase
- Due to increase in nuclear charge
- Decreasing atomic radius

Going down a group

- Electronegativity decreases
- Increased atomic radius
- Screening effect

Electonegativity

Electronegativity Trend

Second ionisation

 E required to remove an electron from an ion with one positive charge in a gaseous state

•
$$X^{+}_{(g)}$$
 \longrightarrow $X^{+}_{(g)}$ + e^{-}

 Make sure to include (g) symbol as def states in gaseous state

Second ionisation E

• Potassium = $1s^2$, $2s^2$, $2p^6$, $3s^2$, $3p^6$, $4s^1$

• 2nd ionisation E is much higher than 1st ionisation E as it involves removing an electron from a full 3p sublevel. The large difference in 1st and 2nd ionisation gives use evidence for existence of energy levels as the electron being removed from the 3p is closer to nucleus and experiences less shielding.

There is a steady increase in ionisation energy values as electrons are removed from an atom.

Reason 1

 For every electron that is removed the nuclear charge is increasing.

Reason 2

 Large increase in IE when an electron is being removed from a new energy level.

Classic mistakes noted when correcting questions on this topic.

- Not learning ionisation energy def. accurately.
- Not labelling axes on graphs
- Mixing energy levels/sub levels and orbitals
- Emphasize in your answer that a ½ filled or full filled sublevel makes an atom more stable.
- Bohr diagrams being used instead of Dot and cross diagrams.
- Use specific language like going across table effective nuclear charge increase and atomic radius decreases. Don't waffle!