Chemical Equations

Reactions of the alkali metals with air

Alkali metals react with air and quickly lose their shine to form a metal oxide.

	thium					
lithium + oxyg	n \rightarrow lithium oxide					
4Li +	$O_2 \rightarrow 2Li_2O$					
sodium						
sodium + oxyg	en → sodium oxide					
4Na +	$O_2 \rightarrow 2Na_2O$					

Reactions of the alkali metals with water

(Word equation only is necessary)
Alkali metals react vigorously with water.

lithium					
lithium + water	→ lithium hydroxide + hydrogen				
sodium					
sodium + water	→ sodium hydroxide + hydrogen				

Reaction between zinc and HCl

Zinc + hydrochloric acid
$$\rightarrow$$
 zinc chloride + hydrogen

Zn + 2HCl \rightarrow ZnCl₂ + H₂

Neutralisation

The properties of an acid are counteracted or neutralised by a base; this type of reaction is called a neutralisation reaction.

When an acid reacts with a base the hydrogen in the acid is replaced by a metal and a salt is formed

Sodium and calcium are examples of metals

General formula to represent neutralisation reaction:

Acid	+	Base	\rightarrow	Salt	+	Water
Example 1 hydrochloric acid HCL	+	sodium hydroxide NaOH	<i>→</i>	sodium chloride NaCl	+ +	Water H₂O
Example 2 hydrochloric acid 2HCl	+ +	calcium carbonate CaCO ₃	$\begin{array}{c} \rightarrow \\ \rightarrow \end{array}$	calcium chloride CaCl ₂ +) ₂ + Water H₂O

Preparation of oxygen

Hydrogen peroxide
$$\rightarrow$$
 oxygen + water

 $H_2O_2 \rightarrow O_2 + H_2O$

Manganese dioxide (MnO₂) is added in as a catalyst (to speed up the reaction)

Preparation of carbon dioxide

Limewater and carbon dioxide

Limewater	+	carbon dioxide	\rightarrow	calcium car	rbonate	+	water
Ca(OH)₂	+	CO_2		\rightarrow	CaCo	O ₃ +	H ₂ O

Aerobic respiration

Photosynthesis

Carbon dioxide + water (+ sunlight and chlorophyll) → glucose + oxygen