Laboratory acids

- Hydrochloric acid(monobasic)
- Sulphuric acid(dibasic)
- Nitric acid
- Ethanoic acid
- Monobasic acid is an acid that donates 1
 H+ for every molecule
- Dibasic acid is an acid that donates 2H+ for every molecule

Hydronium ion

Dative bond

Dissociation of acids in water

• HA +
$$H_20 \implies H_30^+ + A^-$$

- What does the equation above mean?
- The acid (HA) donates a proton to the water and the water accepts the proton to become a hydronium ion and an anion.

$$HCI + H_2O \longrightarrow H_3O^+ + CI^-$$

Arrhenius definition of an acid

- An acid dissociated in water to produce hydrogen ions.
- What are the shortcomings of this theory? Find out on page 138

Laboratory bases

- Sodium hydroxide
- Sodium carbonate
- Magnesium hydroxide
- Calcium hydroxide

Dissociation of bases in water

 Arrhenius definition of a base is a substance that dissociates in water to produce 0H- ions.

Notes on acids and bases and pH

- Arrhenius acid is a substance that breaks down in water to produce H⁺ ions.
- Arrhenius base is a substance that breaks down in water to produce OH- ions.
- Strong Base is Sodium Hydroxide (used for cleaning drains)
- Weak base is ammonia.
- Strong acid is HCl, H₂SO₄, HNO₃
- Weak Acid is vinegar(ethanoic acid)

Bronsted Lowry

- Acid is a proton donor.
- A base is a proton acceptor.
- HCI + H_2O $\longrightarrow H_3O^+ + CI^-$
- $NH_3 + H_20$ \longrightarrow $NH_4^+ + OH^-$
- These two examples demonstrate that water can act as an acid or a base. We call water amphoteric.

Conjugate acid –base pairs We will write in the conjugate pairs in the equations below

- Vinegar and water react
- It is found that this reaction can go from right to left also.

We write the equation this way

Definitions

- A base changes to a conjugate acid when it accepts a proton.
- An acid changes to a conjugate base when it donates a proton.
- A conjugate acid-base pair is where the acid and base differ by a proton.

Neutralisation

- pH is the measure of acidity or basicity
- pH measured using universal indicator
- BL acid is proton donor
- BL base is proton acceptor
- Neutralisation is reaction between an acid and a base that makes salt and water.
- Everyday example is rubbing wasp sting with vinegar to neutralise the base
- Putting lime on soil to neutralise acidic soil.

pH

- Concentration of a solution of HCl is 3.65g/l. Calculate the pH?
- Step 1 : 3.65/36.5 = 0.1M
- Step 2 $pH = -log_{10}[0.1] = 1$

$$pH = -\log_{10}[H^+]$$

pH

 Calculate the pH of a 0.01M solution of NaOH

$$pH = -log_{10}[0.01] = 14-2$$
= 12

$$pH = -\log_{10}[H^+]$$

pH

- Concentration of a solution of 4.0g/l of sodium hydroxide is Calculate the pH?
- Step 1: 4/40 = 0.1M
- Step 2

$$pH = -log_{10}[0.1] = 14-1 = 13$$

$$pH = -\log_{10}[H^+]$$